Ischemic preconditioning does not alter muscle sympathetic responses to static handgrip and metaboreflex activation in young healthy men
نویسندگان
چکیده
Ischemic preconditioning (IPC) has been hypothesized to elicit ergogenic effects by reducing feedback from metabolically sensitive group III/IV muscle afferents during exercise. If so, reflex efferent neural outflow should be attenuated. We investigated the effects of IPC on muscle sympathetic nerve activity (MSNA) during static handgrip (SHG) and used post-exercise circulatory occlusion (PECO) to isolate for the muscle metaboreflex. Thirty-seven healthy men (age: 24 ± 5 years [mean ± SD]) were randomized to receive sham (n = 16) or IPC (n = 21) interventions. Blood pressure, heart rate, and MSNA (microneurography; sham n = 11 and IPC n = 18) were collected at rest and during 2 min of SHG (30% maximal voluntary contraction) and 3 min of PECO before (PRE) and after (POST) sham or IPC treatment (3 × 5 min 20 mmHg or 200 mmHg unilateral upper arm cuff inflation). Resting mean arterial pressure was higher following sham (79 ± 7 vs. 83 ± 6 mmHg, P < 0.01) but not IPC (81 ± 6 vs. 82 ± 6 mmHg, P > 0.05), while resting MSNA burst frequency was unchanged (P > 0.05) with sham (18 ± 7 vs. 19 ± 9 bursts/min) or IPC (17 ± 7 vs. 19 ± 7 bursts/min). Mean arterial pressure, heart rate, stroke volume, cardiac output, and total vascular conductance responses during SHG and PECO were comparable PRE and POST following sham and IPC (All P > 0.05). Similarly, MSNA burst frequency, burst incidence, and total MSNA responses during SHG and PECO were comparable PRE and POST with sham and IPC (All P > 0.05). These findings demonstrate that IPC does not reduce hemodynamic responses or central sympathetic outflow directed toward the skeletal muscle during activation of the muscle metaboreflex using static exercise or subsequent PECO.
منابع مشابه
Impact of ischemic preconditioning on functional sympatholysis during handgrip exercise in humans
Repeated bouts of ischemia followed by reperfusion, known as ischemic preconditioning (IPC), is found to improve exercise performance. As redistribution of blood from the inactive areas to active skeletal muscles during exercise (i.e., functional sympatholysis) is important for exercise performance, we examined the hypothesis that IPC improves functional sympatholysis in healthy, young humans. ...
متن کاملActivation of the carotid chemoreflex secondary to muscle metaboreflex stimulation in men.
Recent work has shown that the carotid chemoreceptor (CC) contributes to sympathetic control of cardiovascular function during exercise, despite no evidence of increased circulating CC stimuli, suggesting enhanced CC activity/sensitivity. As interactions between metaboreceptors and chemoreceptors have been previously observed, the purpose of this study was to isolate the metaboreflex while acut...
متن کاملChemoreflex and metaboreflex control during static hypoxic exercise.
To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 +/- 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O(2)) (chemoreflex activation), isometric handgrip exercise in normoxia (metabore...
متن کاملAugmented pressor and sympathetic responses to skeletal muscle metaboreflex activation in type 2 diabetes patients.
Previous studies have reported exaggerated increases in arterial blood pressure during exercise in type 2 diabetes (T2D) patients. However, little is known regarding the underlying neural mechanism(s) involved. We hypothesized that T2D patients would exhibit an augmented muscle metaboreflex activation and this contributes to greater pressor and sympathetic responses during exercise. Mean arteri...
متن کاملForearm elevation augments sympathetic activation during handgrip exercise in humans.
Although angina pectoris in patients with coronary heart disease often occurs when their forearms are in an elevated position for a prolonged period, and sympathetic activation is a major cause of this condition, little is known about the physiological effects of forearm elevation on sympathetic activity during forearm exercise. We hypothesized that forearm elevation augments sympathetic activa...
متن کامل